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Do electrons change their c-axis kinetic energy upon entering
the superconducting state??
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Abstract. The interlayer tunneling mechanism of the cuprate high temperature superconductors involves
a conversion of the confinement kinetic energy of the electrons perpendicular to the CuO-planes (c-axis)
in the normal state to the pair binding energy in the superconducting state. This mechanism is discussed
and the arguments are presented from the point of view of general principles. It is shown that recent
measurements of the c-axis properties support the idea that the electrons substantially lower their c-
axis kinetic energy upon entering the superconducting state, a change that is nearly impossible in any
conventional mechanism. The proper use of a c-axis conductivity sum rule is shown to resolve puzzles
involving the penetration depth and the optical measurements.

PACS. 74.20.-z Theories and models of superconducting state – 74.25.Gz Optical properties –
74.72.-hHigh-Tc compounds

1 Introduction

There are abundant indications of a remarkable mecha-
nism of superconductivity in cuprate high temperature su-
perconductors, known as the interlayer tunneling mecha-
nism [1]. At its simplest, the theory is that the confinement
kinetic energy of the electrons in the normal state is con-
verted into the superconducting binding energy. From the
uncertainty principle, confinement implies a kinetic en-
ergy of order ~2/2md2, where d is the separation between
the planes. It is as though the electrons were confined in
a deep potential well perpendicular (c-axis) to the CuO-
planes [2]. There is considerable experimental support for
this idea, although theoretical controversy persists.

The very concept of confinement of the motion of
the electrons is at odds with the time honored notion of
a Fermi liquid. At issue is the concept of orthogonality
catastrophe in a non-Fermi liquid, which posits that the
motion along the c-axis is accompanied by the overlap of
many particle wave functions of N electrons, vanishing as
N → ∞. In the absence of controlled non-perturbative
methods to treat this inherently non-perturbative phe-
nomenon, little has been settled. It is therefore necessary
to present the arguments from the point of view of general
principles.

Consider the question posed in the title of this pa-
per: “Do electrons change their c-axis kinetic energy upon
entering the superconducting state?” It is useful to ex-
pand on the precise meaning of this question. In a BCS
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superconductor, the kinetic energy of the superconducting
state is greater than that of the normal state [3]. The rea-
son is that the normal state is a Fermi liquid in which the
kinetic energy is diagonal, the happiest possible situation
from the point of view of the kinetic energy. Therefore,
any change of state must necessarily increase the kinetic
energy. This increase is, however, overwhelmed by the gain
in the potential energy. Thus, a BCS superconductor be-
comes a superconductor despite the increase in the ki-
netic energy. In contrast, if we considered the transition
to a superconducting state from a state in which the ki-
netic energy is not diagonal, the driving mechanism can be
the saving in the kinetic energy. The interlayer mechanism
capitalizes on the possibility that the c-axis kinetic energy
is frustrated in a non-Fermi liquid. The question we ask
is whether or not this frustration is relieved in the super-
conducting state, and whether or not the phenomenology
of the cuprates support this theory.

How should we view the crossover from two to three di-
mensions in cuprate superconductors? In particular, what
is the role of the fluctuations of the phase of the super-
conducting order parameter? It will be shown that the
issues involving phase fluctuations are separate from the
issues involving the microscopic superfluid stiffness. A
striking characteristic of the interlayer mechanism is that
the coupling between the layers can significantly enhance
this stiffness, which is nearly impossible in a conventional
BCS superconductor. The phase fluctuations should, how-
ever, be similar to those in a conventional supercon-
ductor. The prospect of unifying the concepts of phase
fluctuations with the concepts of interlayer tunneling then
becomes apparent.
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How can we test the change of the c-axis kinetic en-
ergy? This question is answered using a powerful sum rule
for the c-axis conductivity, which, it will be shown, leads
to the resolution of an apparent paradox posed by the
optical measurements in these materials over the years.
The paradox has been that the c-axis penetration depth
estimated from the change in the kinetic energy alone is
apparently the same as that obtained ignoring this change.

2 Superconductivity as a 2D to 3D crossover
phenomenon

Superconductivity in cuprates can be viewed as a dimen-
sional crossover between two (2D) and three dimensions
(3D). This is an experimental fact. While the charge trans-
port perpendicular to the CuO-planes in the normal state
is indicative of an insulator, there is perfect coherence
in the superconducting state. Dimensional crossovers are
known even for classical statistical mechanical problems
involving phase transitions, or for quantum statistical me-
chanical problems that can be effectively viewed in terms
of order parameters with only classical fluctuations at
finite temperatures. What, then, is different here? To an-
swer this question, it is necessary to probe it more care-
fully.

Phase transitions in classical statistical mechanics are
independent of the kinetic energy; only the potential en-
ergy is relevant. The superconducting transition in BCS
superconductors can be described by a classical complex
order parameter theory, namely the Ginzburg-Landau the-
ory; quantum mechanics determines merely the parame-
ters of this model. Thus, the kinetic energy cannot play
an explicit role in this phase transition. Low dimensional
superconductors are known to exhibit considerable fluctu-
ation effects at finite temperatures that are entirely classi-
cal in nature. In dimensions less than or equal to two, the
fluctuations are so severe that the order parameter van-
ishes. In two dimensions, a topological phase transition to
a superconducting state takes place, but with a vanishing
order parameter [4]. In the low temperature state, there is
a finite superfluid density as determined from the current
response, but no long range order.

Imagine now that two dimensional planes are stacked
to form a three dimensional superconductor. Conven-
tionally, this is described by the Lawrence-Doniach (LD)
model [5], which consists of the free energy functional

F =
∑
n

∫
d2x

[
α|ψn|

2 +
1

2
β|ψn|

4

+
~2

2mab
|∇ψn|

2
+

~2

2mcd2
|ψn − ψn+1|

2

]
, (2.1)

where α, β, mab, and mc are parameters that are in gen-
eral temperature dependent. The order parameter in the
plane labeled n, ψn(x, y), is a function of the 2D coor-
dinates x and y. The bending energy in the ab-plane is
expressed in terms of a gradient energy, but the energy in
the perpendicular direction is written in its discrete form.

This is correct, because although the coherence length in
the planes is frequently much larger than the lattice spac-
ing, it is not so in the perpendicular direction, and there-
fore the continuum limit cannot be taken in this direction.
The minimization of this functional determines the order
parameter in mean field theory, but to incorporate fluctu-
ations it is necessary to integrate over all possible order
parameter configurations in the partition function.

This is emphatically a classical model [6]. What de-
termines the coupling between the layers? It is argued
that this is due to the Josephson effect [3]. Assume for
the moment that the magnitude of the order parameter
is independent of n, ψn = |ψ|eiφn . Then, the last term in
equation (2.1) is

~2|ψ|2

2mcd2
[1− cos(φn − φn+1)] ≥ 0. (2.2)

This coupling can represent the Josephson effect only close
to Tc, where the Josephson coupling energy is indeed pro-
portional to the square of the order parameter in a con-
ventional superconductor, while it is only proportional to
the magnitude of the order parameter as T → 0 [7]. This
is not terribly disturbing because the Ginzburg-Landau
functional is only supposed to be valid close to Tc. But
it must be remembered that there is no LD model at
low temperatures for conventional superconductors, which
is a frequently misunderstood point [8]. In contrast, the
Josephson effect between two superconductors with non-
Fermi liquid normal states can be recast in the language
of the LD model [7].

In mean field theory, the free energy functional is mini-
mized by setting the order parameter to be the same every-
where, that is, both its magnitude and phase. If we apply
this theory to equation (2.1), we are back to uncoupled
layers and no enhancement of the mean field transition
temperature, T 0

c . Sometimes, an enhancement is claimed,
which is merely the result of considering the functional in
equation (2.1) in which the coupling between the layers
is taken to be −(ψ∗nψn+1 + c.c.) instead of |ψn − ψn+1|2.
For a conventional superconductor this is incorrect, be-
cause the Josephson energy in that case is proportional to
[1−cos(φn−φn+1)] instead of − cos(φn−φn+1). The only
way to enhance T 0

c would be to change the parameters of
the LD model appropriately. This is difficult to achieve
in a BCS superconductor, because the density of states is
changed very little by the small hopping matrix elements
of the electrons between the layers of a highly anisotropic
superconductor.

So, what does the coupling between the layers do? It
can suppress phase fluctuations by coupling the phases of
the layers to raise the true Tc closer to T 0

c . Note that,
in general, the true Tc is less than T 0

c . Thus, a dimen-
sional crossover is driven by suppressing phase fluctua-
tions, and unless the individual two dimensional layers
have a high T 0

c , we gain little by suppressing phase fluctu-
ations. Of course, phase coherence will be established in all
three directions, and those properties that depend on this
coherence will certainly be affected. The actual increase of
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the true transition temperature due to interlayer coupling
can be easily estimated from the XY -model [4].

A prominent feature of the interlayer tunneling the-
ory is that T 0

c can be enhanced by the coupling between
the layers. Phrased in the language of the LD model, it
means that the parameters of this model can be changed
substantially. The phase fluctuations should, however, be
similar to those in a conventional superconductor [9].

3 c-axis conductivity sum rule

For simplicity, consider a model [10] in which the micro-
scopic Hamiltonian expressing hopping of electrons along
the c-axis is

Hc = −t⊥
∑
jl,s

c†jl,scjl+1,s + h.c., (3.1)

where the label j refers to the sites of the two-dimensional

plane, l refers to the layer index, and s refers to spin; c†jl,s
is the electron creation operator. In this section, I focus
only on single layer materials for which all CuO-planes are
equivalent, such as LSCO, Tl2201, Hg1201, and Bi2201.
In the next section, I shall also touch upon multilayer
materials.

One can now derive a sum rule [11]. First, the fre-
quency and the wavevector dependent c-axis conductivity
can be written as

σc(qc, ω, T ) = −
1

Ad

(
ed

~

)2
〈−Hc(T )〉 − Λcret(qc, ω, T )

i(ω + iδ)
,

(3.2)

where qc is the momentum transfer perpendicular to the
plane, A is the two-dimensional area and d is the sepa-
ration between the layers. The retarded current-current
commutator is Λcret(l, t, T ) = −iθ(t)〈[jcH(l, t), jcH(0, 0)]〉.
The paramagnetic current operator is defined by jc(l) =

it⊥
∑
j(c
†
jl,scjl+1,s − h.c.), and the corresponding Heisen-

berg operator, jcH , is defined with respect to the full in-
teracting Hamiltonian. The averages refer to the thermal

averages and 〈Hc(T )〉 = −t⊥
∑
j,s〈c

†
jl,scjl+1,s + h.c.〉. For

optical conductivity, one may set qc = 0, and then, noting
that the retarded current-current commutator is analytic
in the upper-half of the complex ω-plane and that it van-
ishes at infinity, we arrive at the c-axis conductivity sum
rule ∫ ∞

−∞
dω < σc(ω, T ) =

πe2d2

~2Ad
〈−Hc(T )〉, (3.3)

which is a variant of the well-known f -sum rule [12]. Note
that it is necessary that the integral runs between the
limits −∞ and ∞ to arrive at this sum rule.

There are a number of noteworthy points.

– It was argued by Kohn [13] that the f -sum rule does
not hold in a metal, because the unbounded position
operator is not a valid hermitian operator. Indeed, all

derivations of this sum rule involving the position op-
erator in an extended system do look suspicious. How-
ever, the f -sum rule is satisfied [11]. The reason is that
the f -sum rule can be derived by introducing the expo-
nential operator eiq·x and then taking the limit q→ 0.
Of course, there is no such sum rule if the interaction
itself is velocity dependent.

– On occasions, this sum rule is written with finite limits,
which is assumed to be some interband gap. This is
incorrect [14].

– The right hand side of the sum rule is the average
of the single particle hopping Hamiltonian. This may
be deceptive because it is the true interacting kinetic
energy.

– The sum rule is satisfied at any temperature T .

– The absence of Galilean invariance on a lattice allows
the charge carrying effective mass to vary with tem-
perature and interaction. In the continuum limit, such
that d→ 0, but t⊥d

2 fixed, the right hand side of equa-

tion (3.3) is
πne2

m
, where

~2

2m
= t⊥d

2, and n is the

density of electrons in the planes. In this limit, inter-
actions cannot renormalize the effective mass because
the current operator commutes with the Hamiltonian.

We shall now put this sum rule to good use. For a
superconductor, we can write quite generally

< σcs(ω, T ) = Dc(T )δ(ω) + < σcsreg(ω, T ). (3.4)

The first term signifies the lossless flow of electrons in
the superconducting state, while the second is the regular
(nonsingular) part of the optical conductivity. The normal
state optical conductivity is nonsingular; so, the sum rule
can be cast into a more useful form:

Dc(T ) =

∫ ∞
0

dω

[
< σcn(ω, T )−< σcsreg(ω, T )

]
+

πe2d2

2Ad~2

[
〈−Hc(T )〉s − 〈−Hc(T )〉n

]
.(3.5)

If the c-axis kinetic energy is unchanged between the nor-
mal and the superconducting states, as it should be in a
conventional layered superconductor, we recover a variant
of the Ferrell-Glover-Tinkham sum rule [3]. The missing
area between the c-axis conductivities of the normal and
the superconducting states is proportional to the c-axis
superfluid density.

Frequently, the sum rule in equation (3.5) is not mean-
ingfully applied to high temperature superconductors. In-
stead of the true sum rule in equation (3.5), the following
missing area is considered:

D′c(T ) =

∫ ∞
0

dω[< σcn(ω, Tc)−< σ
cs
reg(ω, T )]. (3.6)

Under what conditions can D′c(T ) be related to the true
c-axis penetration depth? It must be assumed that the
c-axis kinetic energy must be the same for the normal
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and the superconducting states and independent of tem-
perature, with the implicit assumption that the normal
state conductivity would change very little for all temper-
atures T ≤ Tc, if superconductivity could be suppressed.
For a conventional superconductor, these assumptions are
justified, but not for cuprates. First, the change in the c-
axis kinetic energy is strikingly evident. Second, the c-axis
resistivity is generically semiconducting and strongly tem-
perature dependent, at least in the underdoped and
optimally doped regimes [15]. This temperature depen-
dence should persist if superconductivity could be sup-
pressed, say by applying a magnetic field, and therefore
the equality of the conductivity at Tc and those at T ≤ Tc
cannot be assumed. For LSCO, this has been demon-
strated experimentally [16]. Even the ab-plane resistivity
was found to be insulating and temperature dependent
once superconductivity was suppressed by applying strong
magnetic fields. These experiments bring into question
theories that are based on the assumption that the T = 0
state is metallic [17]. Therefore, we conclude that the con-
sideration of D′c(T ) begs the interesting question “Do elec-
trons change their c-axis kinetic energy upon entering the
superconducting state?”

On general grounds, there is little we can say about
< σcn(ω, T ) for T ≤ Tc. How do we overcome this impasse?
To answer this question, consider the sum rule at zero
temperature, which can be restated as

Dc(0) ≥
πe2d2

2Ad~2

[
〈−Hc(0)〉s − 〈−Hc(0)〉n

]
. (3.7)

I have assumed that the integral in equation (3.5)
is positive definite. This could be a strict inequal-
ity, although I cannot find a rigorous argument.
One can see, however, that at very high frequencies
the two conductivites should approach each other, and,
at low frequencies, σcnreg(ω, T = 0) ≥ σcsreg(ω, T = 0), if the
superconducting state is at least partially gapped.

If the experiments of Ando et al. [16] are taken as an
indication, the system, at T = 0, is insulating along the
c-axis. It is plausible, therefore, that the integral in equa-
tion (3.5) is smaller than what one would have guessed for
metallic conduction along the c-axis. This is because the
frequency dependent c-axis conductivity in a non-Fermi
liquid is expected to vanish as a power law in contrast to
the Drude behavior. If this is indeed true, we can make
the approximation

Dc(0) ≈
πe2d2

2Ad~2

[
〈−Hc(0)〉s − 〈−Hc(0)〉n

]
. (3.8)

Defining ncs(0) by Dc(0) =
πncs(0)e2

2m
, and δT by δT =

[〈−Hc(0)〉s − 〈−Hc(0)〉n], we get the simple equation

~2ncs(0)

md2
≈
δT

Ad
· (3.9)

The precise definition of the mass, m, is irrelevant because
the penetration depth depends only on Dc(0), that is, only

on the combination
ncs(0)e2

m
. The left hand side of equa-

tion (3.9) is of the order of the confinement kinetic energy
of a particle in an one dimensional potential well of width
d, consistent with the uncertainty principle.

The c-axis penetration depth is given by [18]

1

λ2
c(0)

=
8Dc(0)

c2
, (3.10)

where c is the velocity of light. Therefore, it satisfies the
inequality

λc(0) ≤
~c
ed

1√
4π(δT/Ad)

· (3.11)

If we replace (δT/Ad) by the condensation energy U of the
electrons per unit cell per CuO-layer, including both spin
orientations, and replace the inequality by the equality,
we arrive at the approximate expression

λc(0) ≈
~c
ed

1
√

4πU
, (3.12)

which is twice as large as that of Anderson [19]. While
Anderson equates the condensation energy to the Joseph-
son coupling energy, Ec, I have equated it to the change in
the kinetic energy. I believe that this is more appropriate
because there can be situations in which the condensa-
tion energy of the superconductor is not derived from the
change in the kinetic energy, but Ec is finite–conventional
Josephson effect, for example.

Anderson [19] has observed that λc calculated from the
procedure outlined above agrees well with the measured
values. Actually, my expression for λc in equation (3.12)
is a factor of 2 larger, but this may not be significant at
this time, given the uncertainties involved in extracting
the condensation energy from the measured specific heat
[20]. In LSCO, the c-axis reflectivity exhibits a striking
plasma edge in the superconducting state whose position
is readily determined [21]. As there is little ambiguity in
the measured background dielectric constant, which is ap-
proximately 25, the penetration depth can be easily read
off from the plasma edge. In contrast, the analysis based
on the missing area, if not properly carried out, will be
flawed [22]. For all doping, the agreement found by Ander-
son is good. It is also reassuring to note that the penetra-
tion depth measured from the plasma edge is in agreement
with the microwave measurements [23]. For the single layer
Hg1201, the condensation energy is not known from exper-
iments. Anderson estimated it from the assumption that
it is proportional to T 2

c . This yields a penetration depth in
good agreement with experiments [24]. It must be remem-
bered, however, that this estimate is subject to a greater
uncertainty.

The fly in the ointment is the measurement of Moler
et al. [25] in the single layer Tl2201. The measured pene-
tration depth is almost a factor of 20 too large [19]. Given
the similarities between Tl2201 and Hg1201, this is sur-
prising. However, the c-axis resistivity of Tl2201 is very
anomalous; not only does it not show insulating behavior,



S. Chakravarty: Do electrons change their c-axis kinetic energy upon entering the superconducting state? 341

but it is linear in its temperature dependence; the mag-
nitude of the resistivity near Tc is enormous, however. In
addition, the material chemistry of Tl2201 is quite curi-
ous. The optimally doped materials contain significant in-
terstitial oxygen defects between the two TlO planes, but
more surprisingly, they also contain sizable Cu substitu-
tion at the Tl site [26]. It may be that there are metallic
shorts connecting the CuO planes. Thus, it is unclear if
this measurement reflects the true penetration depth of
this material or not. The material chemistry of Hg1201
appear to be somewhat different [26].

It is interesting that the same sum rule can be turned
on its ear to argue that conventional explanations of λc
are implausible. In Fermi liquid based theories, the change
in the c-axis kinetic energy must be zero. The penetration
depth is then

λc(0) =
c(

8
∫∞

0
dω[< σcn(ω, 0)−< σcsreg(ω, 0)]

)1/2 ·
(3.13)

As argued above, the integral on the right hand side of the
denominator is likely to be small. Consequently, the pen-
etration depth obtained from this formula is likely to be
too large to agree with experiments in LSCO and Hg1201.
Note that this sum rule argument is independent of any
microscopic details.

4 Interlayer enhancement of the mean field
transition temperature

In this section we return to the enhancement of T 0
c in

multilayer materials to compare against the observed sys-
tematics, providing further support to the theory. The in-
equality derived in the previous section needs only small
modifications. The idea is simple. The coupling between

the layers was set by the energy scale
~2ncs(0)

md2
, but now

we have to distinguish between the coupling between the
close layers and the coupling between the distant layers.
Let us define them to be g⊥ and g′⊥, respectively. Strictly
speaking this is a simplification, because the tunneling
matrix elements between the various layers in an unit cell
and those in the neighboring cell are not all the same.

Imagine that not only the true transition temperature
including fluctuations, but even T 0

c of an individual layer
is very small. I now show that if the coupling between the
layers is included, the increase in T 0

c is negligible in BCS
theory. In contrast, the interlayer mechanism leads to a
striking enhancement of T 0

c . The mean field equation for
single layer materials, due to interlayer coupling, is

2g′⊥χin−plane(T
0
c ) = 1, (4.1)

where χin−plane is the in-plane pair susceptibility. For a
n-layer material, n ≥ 2, the mean field equation is

2(n− 1)g⊥ + 2ng′⊥
n

χin−plane(T
0
c ) = 1. (4.2)

We must now determine χin−plane(T ). Our knowledge of
the scale of the coupling energy is insufficient for this pur-
pose [27]. To apply the mean field argument, it is necessary
to know the nature of the coupling between the planes. In
particular, it is necessary to know if the Josephson pair
tunneling Hamiltonian is diagonal in the parallel momen-
tum or not. One of the striking aspects of the interlayer
tunneling theory is that it is approximately diagonal in the
parallel momentum [1,28,29]. So, the χin−plane to be sub-
stituted in these mean field equations must correspond to
the momentum for which this susceptibility is the largest.
To see the striking difference caused by this assumption,
it is necessary to consider only the BCS pair suscepti-
bility. If the coupling Hamiltonian is not diagonal in the
parallel momentum, it is the momentum integrated pair
susceptibility that is relevant, which, however, is only log-
arithmically divergent because

χBCS(T ) = N(0)

∫ ωc

0

dε

ε
tanh(

ε

2T
),

= N(0) ln(1.14ωc/2T ). (4.3)

where N(0) is the density of states at the Fermi energy
and ωc is a cutoff of the order of the Debye energy. When
substituted in equations (4.1, 4.2), the enhancement of Tc
is negligible because N(0)g′⊥, N(0)g⊥ are small compared
to unity. In contrast, if the Josephson pair tunneling is
diagonal in the parallel momentum, it is the maximum
susceptibility on the Fermi surface that is relevant. As
ε→ 0,

χBCS(ε→ 0, T ) =
1

2T
, (4.4)

diverges faster as T → 0. When this susceptibility is sub-
stituted into equations (4.1, 4.2), it gives rise to far greater
enhancements of the transition temperature. It can be
shown from simple models of a non-Fermi liquid that the
largest in-plane pair susceptibility (not momentum inte-
grated) remains of the same order [30], that is, it is a/T ,
for T close to T 0

c , where a is a number of order unity.
Then, the mean field transition temperatures T 0

c1, T 0
c2,

T 0
c3, T 0

c4, for one, two, three, four, . . . layer materials are

given by T 0
c1 =

2g′⊥
a

, T 0
c2 = T 0

c1 +
g⊥

a
, T 0

c3 = T 0
c1 +

4

3

g⊥

a
,

T 0
c4 = T 0

c1 +
3

2

g⊥

a
, etc.; the sequence 1, 4/3, 3/2, . . . con-

verges to 2. This pattern of the systematic enhancement
of the transition temperatures of the multilayer materials
is in accord with experiments.

5 Conclusion

The purpose of this paper has been to present some very
general arguments in favor of the interlayer tunneling the-
ory. There are two significant outcomes of the present
paper. The first concerns the nature of the 2D to 3D
crossover in the superconducting state. It was shown that
the interlayer tunneling mechanism can enhance the mi-
croscopic superfluid stiffness in a way that is not possible
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in conventional theories. This stiffness sets the scale at
which the amplitude of the order parameter forms. On
general grounds, it is difficult to settle whether or not
phase fluctuations are important; experimental evidence
on this question appears to be mixed. If, however, they
are assumed to be present, as has been argued by Emery
and Kivelson [9], they can be included by combining inter-
layer tunneling theory with the Lawrence-Doniach model.
The pseudogap observed in the underdoped materials in
that case would be the superconducting gap calculated
within the interlayer tunneling theory, while the true Tc
will be determined by the phase fluctuations.

The second outcome of the present paper is the resolu-
tion of the paradoxical interpretations of the c-axis optical
measurements, universally evident in the literature. On
the one hand, it appeared that one could obtain the cor-
rect estimates of the c-axis penetration depths only from
the change in the kinetic energy of the electrons as they
enter the superconducting state [19], on the other hand,
the same results were apparently obtained from the c-axis
conductivity sum rule ignoring the change in the kinetic
energy [21]. The resolution is that, until now, the sum
rule has not been meaningfully applied to high temper-
ature superconductors. The paradox disappears with the
correct interpretation of the sum rule. The evidence for the
change in electron’s kinetic energy, an essential element of
the interlayer tunneling theory, appears to be strong in
LSCO, reasonably convincing in Hg1201, and nonexistent
in Tl2201 on the basis of the recent measurements [25]. In
regard to Tl2201, important materials questions remain.

Future measurements of the c-axis optical conductivity
and the penetration depth in both single and multilayer
materials will be valuable. In particular, I would like to
suggest that these experiments be carried out on the sin-
gle layer Bi2201, which in many respects is as anomalous
as its high-Tc cousins. If possible, the optical measure-
ments should be carried out in the presence of a magnetic
field necessary to suppress superconductivity. In this low
Tc material, the required magnetic field should be consid-
erably smaller than in the experiments of Ando et al. [16]
Moreover, the normal state can be pursued and measured
more precisely to lower temperatures.

I thank P.W. Anderson, D.J. Scalapino, and especially D.
Basov, S. Kivelson, and K.A. Moler for discussions. This work
was supported by a grant from the National Science Founda-
tion: DMR-9531575.

Note added in proofs

G. Boebinger has drawn my attention to their high mag-
netic field work (Y. Ando et al., Phys. Rev. Lett. 77,
2075 (1996)) on Bi2201 in which they have shown that a
“metallic” in-plane resistivity coexists with the “semicon-
ducting” c-axis resistivity. This is difficult to understand
within Fermi liquid theory.

References

1. P.W. Anderson, The theory of superconductivity in high-Tc
cuprates (Princeton University Press, Princeton, 1997).

2. This is only true for higher energy processes. For lower
energy processes, there is incoherent hopping of electrons
between the planes that gives rise to zero frequency con-
ductivity at finite temperatures.

3. M. Tinkham, Introduction to Superconductivity, second
edition (McGraw-Hill, New York, 1996).

4. J.M. Kosterliz, D.J. Thouless, Progress in low temperature
physics, VIIB, edited by D. Brewer (North-Holland, Ams-
terdam, 1978).

5. T. Tsuzuki, T. Matsubara, Phys. Lett. 37A, 13 (1971);
W.E. Lawrence, S. Doniach, Proc. 12th Int. Conf. Low
Temp. Phys., 361, edited by E. Kanda (Keigaku, Tokyo,
1971).

6. The phase across a large area, large capacitance, Joseph-
son junction is a macroscopic variable obeying classical dy-
namical equation with the Hamiltonian determined from
the coupling energy. For small capacitance junctions, quan-
tum fluctuations of the phase become important (See Ref.
[3] and references therein.)

7. S. Chakravarty, P.W. Anderson, Phys. Rev. Lett. 72, 3859
(1994).

8. A.J. Leggett, Science 274, 587 (1996).
9. V.J. Emery, S. Kivelson, Nature 374, 434 (1995).

10. The actual hopping matrix elements between the planes
are known from electronic structure calculations (O.K.
Andersen et al., J. Phys. Chem. Solids 56, 1573 (1995).),
including those pertinent to single layer materials (O.K.
Andersen, private communications.). The realistic model
is a little more complex, as it involves hopping to nearest
and next-nearest sites of the adjacent layers as well. More-
over, for multilayer materials, one must modify the model
by distinguishing hopping between close pairs of planes
and those between the unit cells. These modifications are
not difficult to incorporate as long as the interlayer tunnel-
ing is described by a single particle hopping Hamiltonian.

11. B.S. Shastry, B. Sutherland, Phys. Rev. Lett. 65, 243
(1990), and references therein; see also D.J. Scalapino, S.R.
White, S.C. Zhang, Phys. Rev. B 47, 7995 (1993); A sim-
ilar sum rule was invoked by J.E. Hirsch, Physica C 199,
305 (1992), to argue for a change in the kinetic energy in
the superconducting state. Beyond this, there are no sim-
ilarities with our work, either in philosophy or in content.

12. See, for example, P.C. Martin, in Many-Body Physics,
edited by C. De Witt, R. Balian (Gordon and Breach, New
York, 1967).

13. W. Kohn, Phys. Rev. 133, A171 (1964).
14. The hopping Hamiltonian is an effective model, where all

the effects of higher energy bands are in principle down-
folded by a method akin to a renormalization group pro-
cedure [10]. This implies that this effective Hamiltonian
is applicable only to low energy processes below a cutoff
presumably of the order of the interband transition. But
once this model is determined, theoretically there are no
more degrees of freedom left and mathematically the inte-
gral in equation (3.3) has to be between −∞ and∞ for the
sum rule to be correct. This means that the conductivity
σc(ω) calculated from this effective Hamiltonian cannot be
the physical conductivity for scales of the order or larger



S. Chakravarty: Do electrons change their c-axis kinetic energy upon entering the superconducting state? 343

than the high energy cutoff implied in the effective Hamil-
tonian. This makes it problematic to accurately estimate
the missing area as only the order of magnitude of the
cutoff is known.

15. For a review, see Y. Iye, in Physical properties of High
Temperature Superconductors III, edited by D.M. Ginsberg
(World Scientific, Singapore, 1992). See also, H. Takagi
et al., Phys. Rev. Lett. 69, 2975 (1992). Contrary to un-
derdoped and optimally doped materials, the temperature
dependence of the overdoped materials is not obviously
semiconducting. That is not to say that they are metallic;
on the contrary, the magnitude of the resistivities above Tc
are enormous. There are other notable exceptions as well,
such as optimally doped Tl2201 and YBCO for which the
c-axis resistivity is approximately linear with temperature.
Nonetheless, even in these exceptional cases, the temper-
ature dependence can be assumed to persist if supercon-
ductivity could be suppressed.

16. Y. Ando et al., Phys. Rev. Lett. 75, 4662 (1995); G.S.
Boebinger et al., Phys. Rev. Lett. 77, 5417 (1996).

17. M.J. Graf et al., Phys. Rev. B 52, 10588 (1995); P.J.
Hirschfeld, S.M. Quinlan, D.J. Scalapino, Phys. Rev. B
55, 12742 (1997).

18. It is useful to elaborate on this further. From the sin-
gular part of the real part of the conductivity, we con-
clude from the Kramers-Kronig relation that ω= σ(ω) =
2Dc(T )

π
. Consider now the Josephson expression for the

current density in its gauge invariant form, which is J =

Jc sin(δθ−
2edA

~c ), assuming a uniform vector potential A

between the two layers separated by d; Jc is the critical cur-
rent density. If we now set δθ = 0 and take the limit A→ 0,

then we get J = −
2Jced

~c A. Equating this to the defining

equation for the penetration depth, J = −
c

4πλ2
c

A, we get

λc =

(
Φ0c

8π2Jcd

)1/2

, which is a frequently used expression

for layered superconductors described by the LD model.
(See, for example, Moler et al. [25] and references therein.)
The remaining task is to relate Jc to the imaginary part of
the conductivity. This is easily done by choosing the vector
potential to be time dependent, that is, A(t) = Aωe−iωt.
Then, following the same line of reasoning as above, we

get ω=σ(ω) =
2edJc
~ . The penetration depth can now be

expressed as λc =
c√

4πω=σ(ω)
. We can now substitute

the expression for the imaginary part of the conductivity
to find the desired expression for the penetration depth:
λc = c/(8Dc(T ))1/2.

19. P.W. Anderson, Science 279, 1196 (1998). For example,
for doping level of 17-20% in LSCO, the calculated c-axis
penetration depth is 3 ± 1µ. Similarly, for Hg1201, it is
1± 0.5µ.

20. J.W. Loram et al., Physica C 235-240, 134 (1994).
21. S. Uchida, K. Tamasaku, S. Tajima, Phys. Rev. B 53,

14558 (1996); see also D.N. Basov et al., Phys. Rev. B
52, R13141 (1995).

22. Further elaboration on this point may be useful. Aside
from the proper use of the sum rule in equation (3.5), there
are two common mistakes. From the Lawrence-Doniach
model, which is valid only close to Tc, the c-axis pene-

tration depth is λc = (cΦ0/8π
2dJc)

1/2 [18]. It is custom-
ary to assume the validity of the Ambegaokar-Baratoff for-
mula [3]

Jc(T ) =
π∆(T )

2eRn
tanh

∆(T )

2T

with Rn = ρcd, ρc being the c-axis resistivity at Tc. First,
this formula is valid for a special (SIS) Josephson tun-
nel junction, with a temperature independent Ohmic re-
sistance. Moreover, the parallel momentum must not be
conserved. Finally, the gap ∆ must be an isotropic s-wave
gap. None of these assumptions are pertinent to the present
situation. In the case that the parallel momentum is as-
sumed to be conserved, an expression for Jc due to L. Bu-
laevski (JETP 37, 1133 (1973)) is used. This is a patho-
logical formula that is independent of the gap and does
not even vanish as the superconducting gap tends to zero.
The flaw is that this formula is obtained from ordinary sec-
ond order perturbation theory in a situation in which the
correct treatment requires Brillouin-Wigner perturbation
theory.
The second mistake is to apply equation (3.6) and to in-
tegrate up to 2∆. It was already elaborated why D′c(T )
cannot be simply related to the actual penetration depth.
In addition, there is no known sum rules in which the fre-
quency integral is integrated to a finite limit. The cor-
rect sum rule applicable to conventional superconductors

is
∫∞

0
dω[< σcn(ω, Tc)−< σcsreg(ω,T )] =

πedJc

~ . It is true,

however, that for an isotropic BCS superconductor most
of the missing area is contained within an energy few times
the gap, ∆. For high temperature superconductors, how-
ever, the difference between σcn(ω) and σcsreg(ω) persists up
to high energies [21], of order 1000 cm−1 in LSCO. Finally,
because the gap is likely to be a d-wave gap, the specifi-
cation of the finite upper limit of the integral in terms of
the gap is ambiguous.
It is important to note that such redistribution of spectral
weight over enormously large energy range is impossible in
any Fermi liquid based theories, with or without impuri-
ties, because the c-axis single particle hopping bandwidth
is small, especially in the single layer materials. The spec-
tral weight redistribution must be due to strong correlation
effects. All conventional theories that purportedly explains
the experimental measurements of the c-axis penetration
depth suffer from this criticism and cannot be trusted.

23. T. Shibauchi et al., Phys. Rev. Lett. 72, 2263 (1994).
24. C. Panagopoulos et al., Phys. Rev. Lett. 79, 2320 (1994).
25. K.A. Moler et al., Science 279, 1193 (1998).
26. For a brief review of the materials aspects, see J.D. Jor-

gensen et al., Physica C 282-287, 97 (1997) and references
therein.

27. This is also true for classical statistical mechanical prob-
lems discussed in Section 2.

28. S. Chakravarty, A. Sudbø, P.W. Anderson, S. Strong, Sci-
ence 261, 337 (1993).

29. The momentum diagonal pair tunneling Hamiltonian is in-
finitely long ranged in real space and must be understood
as a mean field Hamiltonian. The long ranged nature ren-
ders the mean field theory exact. The BCS reduced Hamil-
tonian has the same property in its real space form. S.
Chakravarty, to be published.

30. See Ref. [1], and also L. Yin, S. Chakravarty, Int. J. Mod.
Phys. B 10, 805 (1996).


